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Abstract

Several mntegral relationships are presented for commensurate transmussion-ine networks. The integrals focus on the face that Z(1) for such net works, where Z(8) 1s the
mput immuttance of the network, 1s associated with a real or redundant unit element prefacing the network Three bandwidth restrictions are denived Some apphications

of the ntegral relationships are presented.

For commensurate transmission-line networks it 1s convenient to use Richards!
variable S | where

Ts
S=tanh{§}=2 +1Q,

7 =21{v, the round trp delay for the shortest commensurate length line,

1 =length of the shortest commensurate length line,

v=velocity of propagation,

$ =0 1w, the complex frequency variable of lumped element networks.
Richards proved that driving point immittances (impedances or admittances) Z(S)
are rational functions of S and are positive real. In this paper we consider several
mtegral relationships for general immuttance functions Z(S) expressable in the
form,

Z(S) = F(S) + M(8)
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Also, at nfinity, M(S) can be expanded into
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The integral of primary interest is
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where C 1s the Bromwich? contour consisting of the £ = 0 axis, and the mfinite
semu-circle enclosing the RHP. Details of the evaluating Eq. (1) are given in the
expanded paper. The final result 1s
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where R(£2) +1 X(£2) = Z ). On the “real-frequency axis” S =182 = 1 tang,
where 8 = w1/v s the electrical length  Substitution into Eq. (2) results in
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The ntegral on the RHS of Eq (3) 1s the average of R(6) over n/2 radians. Hence
transposing, Eq (3) states
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Thus, the average value of the real part of Z(S) over n/2 radians equals Z( 1} less
the weighted values of the residues of its Foster preamble Equations (2) — (4)
are particularly useful forms since Z(1) can be interpreted as the charactenstic
immittance of a unit element® prefacing the Z Network.

WEAK-LIMIT BANDWIDTH LAWS

Equations (3) and (4) may be used to derive a “weak-limit” bandwidth law

applicable to all networks having a positive real mput immittance, and a less
general weak-limit bandwidth law applicable to a restricted class of networks
These laws will be discussed 1n the presentation but are merely summarnized here-
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Equation (5) 1s general, while Eq. (6) holds only for networks where the mput
immittance has non-zero real part, and no poles or zeros on the real frequency
axis. In Eqgs (5) and (6) R, 1s the source immuttance, M is a positive parameter
<4, and U(M) 1s a monotonic decreasing function of M with a maximum of 1
In the expanded paper, a procedure is given: for determimng M so as to mn-
mize the RHS of Eq. (5§) We define the RHS of Eq. (5) as the weak-limit.

RETURN LOSS BANDWIDTH LAW

Using the previous results, the average return loss may be computed. We consider
the integrat

In T (S) ds

S* -1

where I" (S) 1s the reflection coefficient of a given network N The reflection
coefficient may be expressed

(s -z)
1

I(S)= A — -
rl’( s —pk)

where A 1s real, z;, pk are 1n general complex, Re (py) <0, but the Re (2;) un-
restricted. It can be shown that the same final result 1s obtained for negative A
as posttive A, We treat the latter case here Two separate cases are considered



Case1 Re(z)<Oforall1 Then,by Eq.(4)
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Case I Re(z;)) >0 forl <1< I' In this case, following Bode’s procedure®, we

form

~ (S +z)
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1 (S-2)

Note that

| r (S)[ =| l"(S)| for S =182 Therefore, by Eq. (4),
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The first term on the RHS of Eq (9) 1s always less than zero, while the second
term on the RHS of Eq (9) 1s always greater than zero. Thus, Cases I and II can
conveniently be expressed in the single inequality.
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Equation (10) states

the average return loss in nepers over n/2 radians is less than or equal the return
lossar S = 1.

It 1s interesting to note that if the first element of the network N s a unit element
of charactenistic impedance Z, the average return loss cannot exceed

Z+1

Z -1
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regardless of the remainder of N.

An mmportant consequence can be drawn from these results regarding the band-
width of cascaded, stepped-impedance transformers and directional couplers. For
tmpedance transformers one desires to munimize I over the matching bandwidth.
However, the average return loss cannot exceed Eq. (11) Thus, the gam-band-
width performance of the transformer 1s imuted (at least) by the impedance levels
of the first and last quarter-wavelength lines.

For a cascaded directional coupler, T for the even-mode mput mmpedance 1s in
one-to-one correspondence with the coupling coefficient of the coupler. In this
case, one wishes I' to be constant over as wide a bandwidth as posstble But,

again, the average coupling (Inliil) cannot exceed Eq (11) Thus. the bandwidth

of the coupler 1s lnmited (at least) by the even-mode impedance of the first and
last coupling sections. The above hmits may be weak hmuts depending on the
zeros of the reflection coefficient. But, in all cases they cannot be exceeded

MEASUREMENT APPLICATIONS

In additton to prowviding bandwidth mnformation on Z, Egs. (2) — (4) can be
utiized m certamn measurement methods. For example, Eqs. (3) and (4) suggest a
simple CW procedure for measunng the characteristic impedance of an unknown
transmusston line.  Consider a transmussion lme of unknown characteristic im-
pedance Ry terminated 1n an arbitrary real load Ry . Atasutable reference plane,
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R +R, S
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In this case A% = AT = AK, =0. Therefore,

/2
cp 2 _
Z(1)=Ry= = R(@)dO=R,,
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Thus, 2 measurement of R () averaged over /2 radians equals the charactenstic
impedance of the line  Note that knowledge of the value of R 15 not required
An advantage of this CW approach 1s that averaging the measurement tends to
reduce random measurement errors.

For a second example, consider a network consisting of a hne (charactenstic
impedance R) termmated by a shunt stub (charactenistic admittance C) 1n parallel
with a 1eal load RL. Evaluation of Eq (4) for the average of Ry, and Gip yields

{Rin} avg

= R/(1 + RC)

& _
{Rm,)uvg =G+C, (G=1/R) (12)
{Gm}avg =G (13)

A possible application of the latter results 1s to the experimental determination of
self and mutual capacitance (and hence coupling) of some coupled-line geometries
Consider the network shown in Fig. 1. The relationships between the equivalent

circuit parameters (which correspond to the current example) and the coupled-

line parameters are

vC;=G+C (14)
UClzzuC(G“*’C) (15)

Thus, CW measurements of{Rm} and{Gm>
avg avg,

together with Eqs (12) — (15), yield the coupled-line parameters

Numerous other examples are possible

CONCLUSIONS

Use of the weighting function (S — 1) 1 network function contour integrals
resulted 1n several network inter-relationships and 3 bandwidth constraints The
mtegral relationships can be used in the CW determunation of network parameters
11 certain cases

Some specific results were

1. For a network preceded by a unit element, the average real part of the mnput
immattance 1s less than, or equal to, the characteristic immttance of the unit
element.

2. In general, the average of the real part of the mput immittance Z(S) 1s equal
to Z(1) less the weighted residues of its Foster preamble

3. In general,
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avail d < the weak-lmt (as defined in the text)



4 For networks whose mnput immttance has non-zero real part and no poles or

zeros on the 82 axis,
pA
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5 In general,
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