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Abstract

Several mtegxd relatlrmshlps are presented for commensurate transmission-lme networks, The integrals focus on the face that Z( 1) for such net works, where Z(S) IS the

input Immlttance of the network, N associated with a real or redundant unit element prefacing the network Three bwrdwldth restrlct]ons are derived Some appbcatlons

of the mtegrd relationships are presented

For commensurate transmmlon-hne networks It IS convement to use Rlchardsl

vmable S where

7 =21/IJ, the round tnp delay for the shortest commensumte length line,

1 =length of the shortest commensurate length hne,

u =veloclty of propagat!cm,

s =0 + ICJ, the complex frequency variable of lumped element networks.

fd.bards proved that dnvmg point nnmittances (Impedances or admittances) Z(S)

are mtlonal functions of S and are posltwe real, In this paper we consider several

mtegrd relationships for general Immlttance functions Z(S) expressible m the

form.

Z(S) = F(S)+ M(S)
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Also, at mfmlty, M(S) can be expanded mto

hm M(S)=m +m-l +m.j+

s+=- m ““~- ST

The integral of primary interest is

where R(n) + I X(Q)= Z (IQ). On the “reii-frequency axis” S = IQ = I tani3,

where .9 = col/v IS the electncd length Substitution mto Eq. (2) results m

The mtegml on the RHS of Eq (3) IS the average of R(@) over iT/2 mdlans. Hence

trmsposlng, Eq (3) states

A!l
R .vg=z(l)-2k — –A:l -.A~

k=, 1+.Q*k

(4)

‘Thus, the average value of the real part of Z(S) over rT/2 radtans equals Z(1 ) less

the wctghted values of the residues of’ lts Foster preamble Equahons (2) (4)

~re partlcrrlarly useful forms since Z(l) can be interpreted as the ch~mctenstlc

Immlttance of a umt element3 pretlcmg the Z Network.

WEAK-LIMIT BANDWIDTH LAWS

Equations (3) and (4) may be used to derwe a “weak-bmit” bandwidth law

apphcab]e to all networks having a posltne real input Imrnlttance, and a less

general weak-llmlt bandwidth law applicable to a restricted class of networks

These laws wdl be discussed m the presen~dtlan but are merely summarized here-

w~th a maximum rmcertamty of U(M).
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where C IS the Bromwlchz contour conslstmg of the X = O ax]s, and the mfmlte

semi-circle enclosing the RHP. Detads of the evaluating Eq. (1 ) dre gwen in the

expanded paper. The fmd result IS
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RETURN LOSS BANDWIDTH LAW

/

rr/2

z(l)= :-
A!l

R(@)dO+A;+A!’1+2 !$
k=l 1 +Q:

0

Equation (5) IS general, whale Eq. (6) holds only for networks where the input

Immlttance has non-zero real part, and no poles or zeros on the real frequency

axis. In Eqs (S) and (6) RI IS the source Immlttance, M is a posltwe pammeter

<4, and U(M) IS a monotonic decreasing function of M with a maximum of 1

In the expanded paper, a procedure IS gwen for determimng M so as to mml-

mlze the RHS of Eq. (S) We define the RHS of Eq. (5) as the weak-limit.

(3)

Using the previous results, the average return loss may be computed. We consider

the mtezral

where r (S) IS the reffectlon coefficient of a given netwurk N The reflection

coefficient may be expressed

ff (s –z,)
r(s) = A ~— —

~ (s –Pk)
k

where A IS red. ZI, pk are m general complex, Re (pk) <O, but the Re (zl) un-

restricted. It can be shown that the same fmd result IS obtained for negatwe A

as posltwe A. We treat the latter case here Two separate cmes are considered
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Case I Re (zl) <0 for all I Then, by Eq. (4)
RL+R S

z(S) = Rx ~–..RxRx- s – = M(S)

XL
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l-r/2
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—. In/ r(e)l,dd =llllr(l)l.
T

0

(7)

In thm case A~l = AY = A!I = O. Therefore,

Casell Re(zl)>Ofor 1<1 <I’ In this case, following Bode’s procedure, we

form

/

ii/2

Z(l)= RX=< R (0) dO = Ravg
‘n

0

;(s)= r(s) ff!V?

1 (s – z,)
(8) Thus, a measurement of R (0) averaged over n/2 radians equals the characteristic

impedance of the hne Note that knowledge of the value of RL IS not required

An advan t age of tlus CW approach 1s that averaging the measurement t tends to

reduce random measurement errors.
Note that

For a second example, consider a network cons]stmg of a hne (chmacterlshc

Impedance R) termmated by a shunt stub (characterlstlc admlttmce C) m parallel

with a lea] load RL Evaluation of Eq (4) for the avemge of R,!, and Gin yields
I ; (S)1 = I r(S) I for S = IQ Therefore, by Eq. (4),

\

r/2
~ I’ l+Z1
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Rin = R/(1 + RC)
dvg
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{1
=G+C, (G= I/R) (12)

11’ ‘lVg

{}
G =G (13)

1“ avg

(9)

The first term on the RHS of Eq (9) IS always less than zero. whale the second

term on the RHS of Eq (9) M always greater than zero. Thus, Cases 1 and II can

convement]y be expressed m the single meqwdity.

A possible apphcatlon of the latter results M to the experimental detemnnation of

self and mutual capacitance (and hence coupling) of some couple d-ime gemnetrles

Consider the network shown in Fig. 1. The relatjonshlps between the equwdent

clrcult parameters (which correspond to the current example) and the crmpled-

hne parameters are

(lo)

Equat]on (1 O) states

the uverage return loss in nepers over 7r/2 radians is less than or equal the return

10ss at S = I.
UC, ,=G+C (14)

UC,,= YC(G+C) (15)
It 1s Intei-estmg to note that If the fust element of the network N IS a unit element

of chardctermtlc Impedance Z, the average return loss cannot exceed

‘hUs’Cw‘eAsureme”tsOf{R’’l}avg‘nd{G’]’}w
Z+l

in ._

z-l
(11) together with Eqs (1’2 ) – ( 15), yield the coupled-hne pal-ameters

Numerous other examples are possjble

regardless of the renwmder of N,

AII mlportmt consequence can be drawn from these results regzrrdmg the band-

width of cascaded, stepped-lrnpedance tmnsformers and directmnal couplers. For

Impedance transformers one desires to mmlmlze r over the rnatchmg bandwidth.

However, the average return loss cannot exceed Eq. (11) Thus, the gAn-band-

wldth performmce of the trmsformer N hnnted (at Iemt) by the Impedance levels

of the ftrsf and last quarter-wavelength hnes.

CONCLUSIONS

Use of the weighting functlcm (S2 – 1)-1 ]]] network functton contour mteguds

resulted m several network mter-relatlonsh]ps and 3 bmdwldth constmmts The

mtegra] relatlmnhlps cm be used m the CW determmahon of network parameters

m certain casesFor a cascaded directional coupler, r for the even-mode input Impedance N m

one-to-one correspondence with the coupling coefficient of the coupler. ]n thm

case, one wishes r to be constant over as wide a bmdwldth as prmble But,

II
tigam. the average coupling ( In ~– ) cannot exceed Eq (1 1 ) Thus. the bmdwldth

Some speclflc results were

1, For a network preceded by a untt element, the average red part of the input

Imnmttance m less than, or equal to, the characteristic Imnmttmce of the unit

element.

uf the coupler M Itmlted (at least) by the even-mode Impedance of the first and

last coupling sections. The above lmnts may be weak hnuts dependjng on the

zeros of the reflermon coefficient. But, m all ases they cannot be exceeded

2. In general. the average of the real part of the input lmmitt,mce Z(S) N equal

to Z(1) less the weghted residues of Its Foster preambleMEASUREMENT APPLICATIONS

3. In general,
In add,t, on to prowdlng bandw]dth mformatlon on Z, Eqs. (2) -- (4) can be

utdlzed Itl certain measurement methods. For example, Eqs. (3) and (4) suggest a

simple CW procedure for measuring the chamcterntlc impedance of m unknown

transnusslon line. Consider a trmsmmlon hne of unknown characteristic ]m-

pedance RX ternnnated m an arbitmry real load RL. At a suitable reference plane, /

n/2
~

p,”/Pavajl dd < the weak-llmlt (as defined m the text)
T

o
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Fig. 1 Symmetrical Coupled-Llne Geometry and Equivalent Clrcu1t
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